

Home Search Collections Journals About Contact us My IOPscience

New derivation of a conserved quantity for Lagrangian systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 31 L721

(http://iopscience.iop.org/0305-4470/31/43/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.104 The article was downloaded on 02/06/2010 at 07:17

Please note that terms and conditions apply.

LETTER TO THE EDITOR

New derivation of a conserved quantity for Lagrangian systems

M Lutzky

10111 Quinby St, Silver Spring, MD 20901, USA

Received 29 June 1998

Abstract. A new derivation of a recently discussed conserved quantity is given using a general procedure which determines N constants of the motion for any N-dimensional system possessing a non-Noether symmetry.

It has recently been established that any non-Noether symmetry of a dynamical system with Lagrangian $L(q, \dot{q}, t)$ determines a constant of the motion given by

$$\phi = \frac{E(D)}{D} + \frac{\partial \eta^l}{\partial q^l} + \frac{\partial \dot{\eta}^l}{\partial \dot{q}^l}$$
(1)

where $D = \left| \frac{\partial^2 L}{\partial \dot{q}^k \partial \dot{q}^l} \right|$ and $E = \eta^l (q, \dot{q}, t) \frac{\partial}{\partial q^l} + \dot{\eta}^l (q, \dot{q}, t) \frac{\partial}{\partial \dot{q}^l}$ generates the symmetry [1]. This was demonstrated by making use of a conservation law found by Hojman [2] and later generalized by Gonzalez-Gascon [3]. In this note we utilize methods of differential geometry to give a more direct proof, and in particular we show that the result follows from a general procedure which allows the derivation of N conserved quantities for any N-dimensional system possessing a non-Noether symmetry.

We define the Cartan one-form $\theta = \left(L - \frac{\partial L}{\partial \dot{q}^l}\right) dt - \frac{\partial L}{\partial \dot{q}^l} dq^l$ and its Lie derivative $\bar{\theta} = \mathcal{L}_E \theta$. Using these we construct N volume forms $\Omega_k = dt \, d\bar{\theta} \, d\bar{\theta} \dots d\theta \, d\theta$, $k = 1, 2, \dots N$, where each Ω_k contains k factors of $d\bar{\theta}$ and N - k factors of $d\theta$. Each Ω_k may be expressed in the form $\Omega_k = \rho_k \, dt \, dq^1 \dots dq^N d\dot{q}^1 \dots d\dot{q}^N$ and it has been shown in [4] that every $\frac{\rho_k}{D}$ is a constant of the motion. (Strictly speaking, the proof given in [4] is valid only if θ and $\bar{\theta}$ are both Cartan forms, so that there exist Lagrangians L and \bar{L} which lead to the same equations of motion. Essentially the same proof, however, continues to hold as long as $\bar{\theta} = \mathcal{L}_E \theta$, where θ is a Cartan form, but $\bar{\theta}$ need not be). The ρ_k may be evaluated by expressing $d\theta$, $d\bar{\theta}$ in terms of the time, coordinate and velocity differentials in the original expression for Ω_k ; in the particular case of ρ_1 , however, a shorter method exists which leads to (1).

We define $v = dt dq^1 \dots dq^N d\dot{q}^1 \dots d\dot{q}^N$, and consider the identity

$$dt \, d\theta \dots d\theta = (-1)^{N+1} N! Dv \tag{2}$$

where the left-hand side contains N factors of $d\theta$. Applying the Lie derivative operator \mathcal{L}_E to the left-hand side of (2) yields $N dt d\bar{\theta} d\theta \dots d\theta = N\rho_1 v$, where the first term contains N - 1 factors of $d\theta$.

0305-4470/98/430721+02\$19.50 © 1998 IOP Publishing Ltd

L721

Applying the same operator to the right-hand side of (2) gives

$$(-1)^{N+1}N!\left[E\{D\}+\left\{\frac{\partial\eta^l}{\partial q^l}+\frac{\partial\dot{\eta}^l}{\partial\dot{q}^l}\right\}D\right]v$$

Equating these two results and referring to (1) then gives

$$\frac{\rho_1}{D} = (-1)^{N+1} (N-1)! \phi.$$

Since it is known that $\frac{\rho_1}{D}$ is conserved, we see that ϕ is also conserved, which establishes the desired result.

References

- [1] Lutzky M 1995 J. Phys. A: Math. Gen. 28 L637
- [2] Hojman S A 1992 J. Phys. A: Math. Gen. 25 291
- [3] Gonzalez-Gascon F 1994 J. Phys. A: Math. Gen. 27 L59
- [4] Lutzky M 1982 J. Phys. A: Math. Gen. 15 L87